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SI. 1A: Chemical Inventory 

 Lead (II) oxide (>99.9% trace metal basis, 211907), tetraoctylammonium bromide 

(98%, 294136), zinc iodide (>98%, 223883), zinc chloride (reagent grade, anhydrous, >98%, 

793523), oleic acid  (technical grade, 90%, 364525), and γ-butyrolactone (ReagentPlus, 

>99%, B103608) were purchased from Millipore Sigma. Cesium hydroxide 50 wt% solution 

in water (99.9% trace metal basis, AC213601000), zinc bromide (99.999% trace metal basis, 

AC212770100), oleylamine (>50%, TCI America O0059), isopropyl alcohol (A416-4), 

toluene (extra dry over molecular sieves, 99.85%, AC364410025), methyl acetate (extra pure 

99%, AC181380025), quinine sulfate dehydrate (AC418780050), fluorescein (laser grade, 

99%, AC410620010), sodium hydroxide (pellets, S320), and rhodamine 6G (99%, 

AC419010250) were purchased from Fisher Scientific. Sulfuric acid (60%, 098361) was 

purchased from Oakwood Chemical. The toluene used in all precursors, starting perovskite 

QDs, and flow studies was dried further over fresh molecular sieves. All other chemicals were 

used as received. 

 

SI.1B: Preparation of Starting CsPbBr3      

 The green-emitting CsPbBr3 QDs were prepared using the flow synthesis strategy 

described in Epps et al. and as adapted from Wei et al..  Briefly, a 0.04 M bromide solution 

was prepared by dissolving 1.3 mmol of tetraoctylammonium bromide in a solution of 26 mL 

of anhydrous toluene and 6.5 mL of oleic acid at room temperature. A 0.04 M cesium-lead-

oleate solution was prepared by first forming a 0.2 M solution. 7 mL of oleic acid was 

combined with 1.3 mmol of lead (II) oxide and 0.12 mL of cesium hydroxide solution, 

followed by heating in an oil bath at 160 
o
C for 30 min then heating in an oven at 120 

o
C for 

30 min. The final cesium-lead-oleate precursor was completed by diluting 6.5 mL of the stock 

solution with 26 mL of anhydrous toluene. SQDs were synthesized by continuously 

delivering the two bromide and cesium-lead-oleate precursors into a custom polyether ether 
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ketone (PEEK) cross junction at 1.2 mL/min each with an argon stream of 2 mL/min. The 

segmented gas-liquid flow continuously ran through a 2 m length of 0.04 in inner diameter 

(ID) fluorinated ethylene propylene (FEP) tubing followed by collection into a continuously 

stirred vial fed with an anti-solvent stream (γ-butyrolactone) flowing at 1.3 mL/min. QD 

collection was carried out for 10 min followed by 10 min of additional stirring. The mixture 

was then centrifuged at 6,500 rpm for 10 min and dispersed in anhydrous toluene at twice the 

fluid volume of the starting mixture. The dispersed nanocrystals were allowed to age for 12 h. 

The aged CsPbBr3 QDs were then centrifuged at 4,000 rpm for 4 min. The final supernatant 

was collected and used for autonomous halide exchange studies. 

 

SI.1C: Preparation of Halide Exchange Precursors 

 The 0.04 M halide salt precursors, zinc chloride (ZnCl2) and zinc iodide (ZnI2), were 

prepared by adding 0.8 mmol of zinc salt to 20 mL of anhydrous toluene and 0.4 mL of 

isopropyl alcohol. The precursors were then heated at 100 
o
C with ventilation for 5 h, 

sonicated for 2 min, and allowed to cool before use. The 0.025 M zinc bromide (ZnBr2) 

precursor was prepared similarly with 0.5 mmol of zinc bromide, 20 mL of anhydrous toluene, 

and 0.25 mL of isopropyl alcohol. The oleic acid and oleylamine solutions were each 

prepared by combining with anhydrous toluene in a 50 vol% mixture. 

 

SI.2A: Reactor Operation Procedure 

 The sampling process integrated into the modeling and condition selection algorithm 

begins operation as soon as flow conditions are made available. For all uninformed ensemble 

model training methods, the modeling algorithm first sends two random reaction conditions to 

the fluidic microprocessor, then operates at an offset with the reactor. In other words, while 

the flow synthesis reactor is running condition i, the algorithm is training and selecting input 

condition i+1 with sample set 1…i-1. For SNOBFIT, CMA-ES, and the pre-trained NN-EPLT, 
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model selection began with the first condition. Upon receiving a set of reaction conditions, the 

autonomous flow synthesis platform initiates flow of the precursors and carrier phase into the 

fluidic path. In order to minimize chemical consumption, the SQD pump does not begin until 

100 s after the other pumps were activated. After 360 s (total) the algorithm begins spectral 

sampling. For UV-Vis absorption followed by photoluminescence sampling, 50 spectra were 

collected at intervals of 25 ms with integration times of 12 and 9 ms, respectively. This 

process is replicated five times in series for a single set of reaction conditions. An embedded 

spectra processing algorithm then isolates the reactive phase spectra from the segmented oil-

liquid flow. EP, EFWHM, and PLQY values are extracted from the resulting spectra and the five 

replicates are then averaged together. The final outputs are returned to the modeling algorithm 

for continued condition selection. 

 

SI.2B: Flow System Components 

 The flow system is driven by seven stainless steel syringes (Harvard Apparatus) each 

connected to a computer-controlled syringe pump (Harvard Apparatus, PhD Ultra and 

Chemyx, Fusion 4000). The channels connecting the syringe to the flow junctions are 50 cm 

each of 0.01 in ID fluorinated ethylene propylene (FEP) tubing, and the PFO and SQD 

delivery channels are both intersected by a selector valve (VICI, C25-3180EUHB), which 

provides the option to redirect flow to the respective refill vessel. The zinc halide and ligand 

mixtures are combined within two PEEK cross-junctions (IDEX-H&S, P-722) connected in 

series followed by a 10 cm, 0.01 in ID, FEP passive micromixer. This mixture is directed into 

a tee-junction (IDEX-H&S, P-715) to combine with the SQD channel which is followed by a 

second micromixer. The homogenous reactive solution is finally combined in a second tee-

junction with PFO for isolated droplet formation. The reactor section is comprised of 150 cm 

of 0.03 in ID FEP followed by the reduced path length flow cell. Optical sampling is 

conducted using a miniaturized fiber-coupled spectrometer (Ocean Optics, HDX UV-Vis), 
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deuterium halogen lamp (Ocean Optics, DH-2000-BAL), and 365 nm high power light 

emitting diode (Thorlabs, M365LP1) all connected to the flow cell through fiber optic patch 

cords (Ocean Optics, QP600-1-SR). 

 

SI.2C: Inline Spectra Sampling 

UV-Vis absorption spectra for the transient, reactive phase slugs were automatically 

isolated from each set of 50 continuously collected samples by first base-line correcting the 

beer-lambert absorption at 1.6 eV. Spectra were then sorted in descending order of the 

measured absorption intensity at 3.4 eV (corresponding to the 365 nm emission source), and 

after discarding outlier spectra caused by the oil-reactive phase interface, the highest 

measured 20 samples were averaged together. A similar process was performed for 

photoluminescence (PL) spectra. Using the peak emission intensity, the spectra were sorted in 

descending order and the highest measured 20 samples were averaged. Photoluminescence 

quantum yield (PLQY) was calculated from the resulting spectra according to the equation 

   
                  

                
 

where subscripts   and   correspond to the sample and the reference dye,   is the quantum 

yield,      is the integral of the photoluminescence peak,        is the measured absorption at 

3.4 eV, and   is the refractive index.
[1,2] 

 

SI. 2D: Flow Cell Validation 

The reduced path length flow cell was evaluated using a 1mm×10 mm quartz cuvette 

for calculation of the path length and a 10 mm×10 mm cuvette for validation of the PLQY 

measurements. As shown in Figure S1, the flow cell is able to effectively retain a linear 

relationship with the integral of PL as a function of absorption at the excitation wavelength 

for all absorption values below 0.1. Using the absorption curves of the same concentrations of 
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fluorescent dyes (quinine sulfate in 0.05 M sulfuric acid, fluorescein in 0.1 M sodium 

hydroxide, and rhodamine 6G in ethanol) between the 1 mm path length cuvette and the 

compressed tube flow cell, the path length of the compressed tubing section was calculated to 

be 206 ± 1 m. Offline PLQY validation was conducted according to the equation
[3] 

   
      

    
 

where m is the slope of the linear fit of the integral PL as a function of the absorption at 3.4 

eV, with an intercept through the origin. 

 

SI. 3A: Non-Dimensionalization of Input Parameters 

 Non-dimensional parameters     ,      
,       ,    , and      were correlated to 

volumetric flow rate of the starting precursors through the relations 
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     (              )
  

where   is the input volumetric flow rate of the referenced precursor and all non-dimensional 

values ( ) are constrained to values between 0 to 1. The scalar parameters shown in the 

denominator of these relationships were determined, through preliminary studies, to most 

effectively isolate a meaningful window of attainable reaction conditions. The flow rate of 

toluene, the reaction solvent, is then set according to the relationship 

                                                . 
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thereby keeping the total flow rate of the reactive phase at 240 µL/min. The flow rate of the 

carrier phase, perfluorinated oil, was kept constant at 180 µL/min. For all experiments 

conducted in this study, the average set flow rates for     ,       ,        ,     ,      , and 

         are 148.5, 16.5, 13.8, 7.3, 7.1, and 46.7 µL/min respectively. The duration of 

unassisted experimentation was limited by the 50 mL toluene syringe, which on average 

emptied after 17.8 hr. However, the inclusion of additional syringe refill modules is a simple 

modification of the reaction system that would extend the unassisted run duration 

significantly. 

 

SI.3B: Neural Network-Based Modeling 

The ensemble model consists of 500 classical cascade-forward neural networks 

(illustrated in Figure S7) of randomized architecture with model and data weighting assigned 

through Adaboost.RT. For every network, the number of layers used is randomly selected 

between either 1 or 2 and the number of nodes in each is randomly assigned to an integer 

value between 5 and 25. Models are trained for five inputs and three outputs using the 

Levenberg-Marquardt method with Adaboost data weights to bias training. Exchanges using 

ZnCl2 and ZnI2 were treated as separate systems, and their respective models were trained 

independently. Measurements with which any of the three output metrics are unable to be 

derived are discarded from model training. Before insertion into the boost function as well as 

the subsequent decision policies, the three output parameters are converted into a scalar 

quality metric (Z) through an objective function, shown in the equation 

                 
|               |

   
                 

     

     
  

Scaling constants BPE and BFWHM are 1.2 eV and 0.4 eV, and output parameter weight 

fractions APE, APLQY, and AFWHM are 0.85, 0.1, and 0.05 respectively. Preliminary model 

selection and objective function performance studies are further shown in Figure S8 and S9. 
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SI. 3C: Decision-Making Policies 

For a given set of synthesis conditions  , we let       be an unknown, ground truth 

experimental response. In Bayesian Optimization, we attempt to identify the inputs    that 

maximize / minimize the ground-truth response       through a strategic selection of 

sequential experiments that result in noisy observations  ̂    which we will assume to be 

normally distributed, additive perturbations from the ground truth: 

 ̂            

where                is a normally distributed noise with variance   
 . After   such 

experiments, we assume we may obtain a time-  estimate       of the ground truth response, 

as well as a quantification       of the uncertainty of this estimate. Specifically, we assume 

that 

         (        
    )     (1) 

That is, we shall assume that the unknown ground truth response at any input   is normally 

distribution with mean estimate       and variance   
    . The functions       and   

     

can be estimated, for example, using an ensemble of candidate models. 

Given time-  beliefs on the ground truth response, the Artificial Chemist selects the 

next set of synthesis conditions      to test using a decision-making policy. For example, the 

Artificial Chemist can select an experiment at random in order to explore the space of 

synthesis conditions. This policy is called Pure Exploration and can be conducted 

independent of time-  beliefs. In contrast and in a slightly more informed strategy, if the 

Artificial Chemist has high confidence in the estimate   , it could try the predicted optimal 

conditions according to this estimate. This policy is called the Pure Exploitation (EPLT) 

policy: 

    
           (     ) 
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If, on the other hand, a large amount of uncertainty prevents the Artificial Chemist from 

trusting the estimate, it could instead consider the experimental conditions whose estimated 

response has the largest amount of uncertainty. This is called the Maximum Variance (MV) 

policy: 

    
         (  

    ) 

These simple policies often perform poorly when attempting to find the optimal set of 

conditions within a limited number of experiments because they do not adequately balance 

between resolving uncertainties in the estimate and looking for optimal values of the response. 

In other words, given a small experimental budget, the Artificial Chemist would like to 

develop a reasonable estimate of the ground truth only as much as that estimate helps it to 

determine the optimal values of the ground truth. It should be noted that we do not wish to 

expend experimental runs learning the function globally. The problem of achieving the trade-

off of learning the ground truth to high degree of fidelity vs. focusing on finding its extrema is 

called the exploration versus exploitation dilemma. Below, we outline two policies that better 

strike this balance. 

The Upper Confidence Bound (UCB) policy attempts to maximize 

    
          (            ) 

where   is a parameter in this case defined as   
 

√ 
. It includes both an exploitation term    

and an exploration term   . The quantity              can be thought of as an optimistic 

estimate of the ground truth response function value      . Specifically, Dasgupta
[4]

 showed 

that under the normality assumptions in (1), the probability that the ground truth response 

      deviates from the mean estimate       by an amount at most        is given by 

  [|           |           ]   
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Due to the symmetry of the normal distribution, this means that with confidence level 

  
 

   
, the ground truth response        is at most             . It is important to note 

here that this derivation of the UCB policy diff ers slightly from the typical treatment, which 

assumes a more Frequentist interpretation. In the standard treatment, sample mean and 

variances are calculated empirically from the data, and an appeal to Hoeff ding’s inequality 

rather than that of Dasgupta is used to determine confidence levels on the similarly obtained 

optimistic estimates of the ground truth. 

The Expected Improvement (EI) policy attempts to maximize a measure of 

improvement. After   experiments, we let   
  be the maximal response value observed. For an 

experiment  , the improvement is defined as 

[        
 ]  {

        
                  

 

                               
 

In other words, the improvement is a measure of how much more the experimental 

response will be if the Artificial Chemist was to run experiment   compared to the best 

response it had seen so far. If running experiment   would not result in surpassing the 

previous best value, then the improvement value is simply  . Of course, this cannot be 

evaluated because the Artificial Chemist does not know      . However, the Artificial 

Chemist can use its time-  beliefs to calculate the expected improvement: 

    
             [ 

       
 ]   

where the    is the expected value integration operator under time-  beliefs on   . Under 

normality assumptions (1), this expectation can be calculated according to the following 

expression taken from
[5] 

  [ 
       

 ]  [     ]        (
     

     
)  |     | (

     

     
) 

where                   
  and  ,   are the standard normal probability density and 

cumulative density functions, respectively. The above derivation is made assuming the ground 
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truth response can be observed without noise. To include noise, several heuristics and 

augmentations to the above are typically employed. For example, instead of using the 

previously observed best value, the Artificial Chemist could instead use the maximum of the 

current estimate   
      (     ). 

SI. 4: Offline Analyses Sample Preparation 

Samples were prepared for offline analyses by first collecting the synthesized product 

in flow and combining with different methyl acetate, depending on the target composition (for 

target emissions of 2.8, 2.6, 2.4, 2.2, and 2.0 eV, ratios of crude solution to methyl acetate of 

5:4, 5:4, 5:4, 1:1, and 2:3 were used respectively). The solution was mixed for 5 min then 

centrifuged at 6,400 rpm for 20 min. TEM samples were drop-cast onto 200 mesh copper 

grids with carbon coating (Ted Pella). TEM images, shown in full in Figure S10, were 

collected using the FEI Talos F200X operated at 200 kV. X-ray diffraction (XRD) and 

grazing incidence X-ray refraction (GIXRD) (see Figure S11) samples were drop-cast onto 

fused silica substrates under inert conditions. XRD and GIXRD were performed with a 

Rigaku SmartLab X-ray Diffractometer (Cu Kα source, 1.54 Å, 44mA, 40kV) in Bragg-

Bretano and parallel beam configurations, respectively.   
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Figure S1. (A) Illustrations of compressed tube flow cell through an exploded view. (B) 

Integral photoluminescence as a function of absorption at 3.4 eV for three fluorescent dyes 

taken at equivalent concentrations between a 1x10 mm cuvette and the custom flow cell and 

(C) for quinine sulfate and two mixed halide perovskite solutions between a 10x10 mm 

cuvette and the custom flow cell with (D) corresponding photoluminescence spectra and 

quantum yield measurements with normalized absorption and photoluminescence spectra for 

(E) CsPb(Br/Cl)3 and (F) CsPb(Br/I)3 perovskite solutions with measurements from both the 

flow cell and cuvette. 



 

14 

 

 
Figure S2.  (A) Peak emission energy (Ep), emission full-width at half-maximum (EFWHM), 

and photoluminescence quantum yield () for continuous sampling in the Artificial Chemist of 

constant flow conditions (    ,      
,       ,    ,         ) and the average measured 

value as indicated by the dashed line with (B) histograms of corresponding data. 
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Figure S3. Peak emission energy (Ep), emission full-width at half-maximum (EFWHM), and 

photoluminescence quantum yield () sampled continuously for entirety of flow stabilization 

in the Artificial chemist when moving from three randomly selected experimental conditions 

to constant flow conditions,     ,      
,       ,    ,         , for (A) ZnI2 and (B) 

ZnCl2 as the exchanging halide sources. All flow rates except for the starting quantum dot 

stream were set at time zero. The starting quantum dot solution was stopped at time zero then 

set after  

100 s. 
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Figure S4A. (A) Measured peak emission energy (Ep), emission full-width at half-maximum 

(EFWHM), photoluminescence quantum yield (), and objective function (Z) values for 25 

samples selected using the neural network ensemble with the upper confidence bound 

decision policy for six different target emissions (● 2.4 eV, ● 2.3 eV, ● 2.2 eV, ● 2.1 eV, ● 

2.0 eV, and ● 1.9 eV) with ZnI2 as the exchanging halide source and no prior knowledge. (B) 

Isomap representations of the corresponding input conditions selected by the method with 

measured Z. Isomaps were formed in Euclidian space on the non-dimensionalized input 

variables with the four nearest neighbors.  
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Figure S4B. (A) Measured peak emission energy, emission full-width at half-maximum, 

photoluminescence quantum yield, and objective function values for 25 samples selected 

using the neural network ensemble with the upper confidence bound decision policy for five 

different target emissions (● 2.9 eV, ● 2.8 eV, ● 2.7 eV, ● 2.6 eV, and ● 2.5 eV) with ZnCl2 

as the exchanging halide source and no prior knowledge. (B) Isomap representations of the 

corresponding input conditions selected by the method with measured Z. Isomaps were 

formed in Euclidian space on the non-dimensionalized input variables with the four nearest 

neighbors. 
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Figure S4C. (A) Measured peak emission energy, emission full-width at half-maximum, 

photoluminescence quantum yield, and objective function values for 25 samples selected 

using the informed (i.e., with prior knowledge) neural network ensemble with the pure 

exploitation decision policy for six different target emissions (● 2.4 eV, ● 2.3 eV, ● 2.2 eV, ● 

2.1 eV, ● 2.0 eV, and ● 1.9 eV) with ZnI2 as the exchanging halide source and prior 

knowledge transfer. (B) Isomap representations of the corresponding input conditions selected 

by the method with measured Z. Isomaps were formed in Euclidian space on the non-

dimensionalized input variables with the four nearest neighbors. 
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Figure S4D. (A) Measured peak emission energy, emission full-width at half-maximum, 

photoluminescence quantum yield, and objective function values for 25 samples selected 

using the informed (i.e., with prior knowledge) neural network ensemble with the pure 

exploitation decision policy for five different target emissions (● 2.9 eV, ● 2.8 eV, ● 2.7 eV, 

● 2.6 eV, and ● 2.5 eV) with ZnCl2 as the exchanging halide source and prior knowledge 

transfer. (B) Isomap representations of the corresponding input conditions selected by the 

method with measured Z. Isomaps were formed in Euclidian space on the non-

dimensionalized input variables with the four nearest neighbors. 
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Figure S4E. (A) Measured peak emission energy, emission full-width at half-maximum, 

photoluminescence quantum yield, and objective function values for 25 samples selected 

using the neural network ensemble with the pure exploitation decision policy for six different 

target emissions (● 2.4 eV, ● 2.3 eV, ● 2.2 eV, ● 2.1 eV, ● 2.0 eV, and ● 1.9 eV) with ZnI2 

as the exchanging halide source and no prior knowledge. (B) Isomap representations of the 

corresponding input conditions selected by the method with measured Z. Isomaps were 

formed in Euclidian space on the non-dimensionalized input variables with the four nearest 

neighbors. 
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Figure S4F. (A) Measured peak emission energy, emission full-width at half-maximum, 

photoluminescence quantum yield, and objective function values for 25 samples selected 

using Stable Noisy Optimization by Branch and Fit  for six different target emissions (● 2.4 

eV, ● 2.3 eV, ● 2.2 eV, ● 2.1 eV, ● 2.0 eV, and ● 1.9 eV) with ZnI2 as the exchanging halide 

source and no prior knowledge. (B) Isomap representations of the corresponding input 

conditions selected by the method with measured Z. Isomaps were formed in Euclidian space 

on the non-dimensionalized input variables with the four nearest neighbors. 
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Figure S4G. (A) Measured peak emission energy, emission full-width at half-maximum, 

photoluminescence quantum yield, and objective function values for 25 samples selected 

using the neural network ensemble with the expected improvement decision policy for six 

different target emissions (● 2.4 eV, ● 2.3 eV, ● 2.2 eV, ● 2.1 eV, ● 2.0 eV, and ● 1.9 eV) 

with ZnI2 as the exchanging halide source and prior knowledge transfer. (B) Isomap 

representations of the corresponding input conditions selected by the method with measured Z. 

Isomaps were formed in Euclidian space on the non-dimensionalized input variables with the 

four nearest neighbors. 
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Figure S4H. (A) Measured peak emission energy, emission full-width at half-maximum, 

photoluminescence quantum yield, and objective function values for 25 samples selected 

using Gaussian process regressions with the expected improvement decision policy for six 

different target emissions (● 2.4 eV, ● 2.3 eV, ● 2.2 eV, ● 2.1 eV, ● 2.0 eV, and ● 1.9 eV) 

with ZnI2 as the exchanging halide source and prior knowledge transfer. (B) Isomap 

representations of the corresponding input conditions selected by the method with measured Z. 

Isomaps were formed in Euclidian space on the non-dimensionalized input variables with the 

four nearest neighbors. 
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Figure S4I. (A) Measured peak emission energy, emission full-width at half-maximum, 

photoluminescence quantum yield, and objective function values for 25 samples selected 

using Covariation Matrix Adaption – Evolution Strategy for six different target emissions (● 

2.4 eV, ● 2.3 eV, ● 2.2 eV, ● 2.1 eV, ● 2.0 eV, and ● 1.9 eV) with ZnI2 as the exchanging 

halide source and prior knowledge transfer. (B) Isomap representations of the corresponding 

input conditions selected by the method with measured Z. Isomaps were formed in Euclidian 

space on the non-dimensionalized input variables with the four nearest neighbors. A 

population size of 10 was used. 
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Figure S5. Mean of best three measured Z values as a function of sample number averaged 

over six different target emissions selected by the uninformed neural network ensemble with 

the upper confidence bound decision policy with and without the use of Adaboost. 
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Figure S6. Measured peak emission energy, emission full-width at half-maximum, and 

photoluminescence quantum yield values from the highest performing experiment selection 

methods tested, the uninformed neural network ensemble with the upper confidence bound 

policy (● ZnI2 and ● ZnCl2) and the informed neural network ensemble with the pure 

exploitation policy (● ZnI2 and ● ZnCl2). 
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Figure S7. Illustrated diagrams of (A) a single neural network architecture with a randomize 

number of layers and nodes and (B) the ensemble neural network model built from the 

collection of 500 neural networks of randomized architecture. 
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Figure S8. Measured peak emission energy, emission full-width at half-maximum, and 

photoluminescence quantum yield values from all experiments conducted with the objective 

function value, Z, colormap for a target emission of 2.2 eV. The objective function effectively 

isolates the target emission while simultaneously search for the optimal full-width at half-

maximum and photoluminescence quantum yield. 
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Figure S9. Mean squared error (MSE) of simulated neural network model predictions using 

200 randomly selected and sampled experimental conditions when compared to the measured 

values for peak emission energy (PE), emission full-width at half-maximum (FWHM), and 

photoluminescence quantum yield (PLQY) (A) as a function of ensemble size for a model 

trained on 20 experimental conditions and (B) as a function of training set size for an 

ensemble of 500 models. Histograms were collected by calculating the MSE of 20 randomly 

selected measured values relative to the model predictions for 50 replicates of each set of 

model parameters.  



 

30 

 

 
Figure S10. Transmission electron microscopy (TEM) images of the starting CsPbBr3 

quantum dots and the products of five selected target emissions synthesized by the Artificial 

Chemist. 
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Figure S11. Grazing incidence x-ray diffraction patterns for the starting CsPbBr3 quantum 

dots and the products of five selected target emissions synthesized by the Artificial Chemist. 

 


